Testing Pairwise Association between Spatially Autocorrelated Variables: A New Approach Using Surrogate Lattice Data

نویسندگان

  • Vincent Deblauwe
  • Pol Kennel
  • Pierre Couteron
چکیده

BACKGROUND Independence between observations is a standard prerequisite of traditional statistical tests of association. This condition is, however, violated when autocorrelation is present within the data. In the case of variables that are regularly sampled in space (i.e. lattice data or images), such as those provided by remote-sensing or geographical databases, this problem is particularly acute. Because analytic derivation of the null probability distribution of the test statistic (e.g. Pearson's r) is not always possible when autocorrelation is present, we propose instead the use of a Monte Carlo simulation with surrogate data. METHODOLOGY/PRINCIPAL FINDINGS The null hypothesis that two observed mapped variables are the result of independent pattern generating processes is tested here by generating sets of random image data while preserving the autocorrelation function of the original images. Surrogates are generated by matching the dual-tree complex wavelet spectra (and hence the autocorrelation functions) of white noise images with the spectra of the original images. The generated images can then be used to build the probability distribution function of any statistic of association under the null hypothesis. We demonstrate the validity of a statistical test of association based on these surrogates with both actual and synthetic data and compare it with a corrected parametric test and three existing methods that generate surrogates (randomization, random rotations and shifts, and iterative amplitude adjusted Fourier transform). Type I error control was excellent, even with strong and long-range autocorrelation, which is not the case for alternative methods. CONCLUSIONS/SIGNIFICANCE The wavelet-based surrogates are particularly appropriate in cases where autocorrelation appears at all scales or is direction-dependent (anisotropy). We explore the potential of the method for association tests involving a lattice of binary data and discuss its potential for validation of species distribution models. An implementation of the method in Java for the generation of wavelet-based surrogates is available online as supporting material.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A wavelet-based method to remove spatial autocorrelation in the analysis of species distributional data

Accepted 4 April 2008 Copyright © EEF ISSN 1399-1183 Species distributional models based on lattice data often display spatial autocorrelation. Spatial autocorrelation means that observations from nearby locations are often more similar than would be expected on a random basis (Legendre and Legendre 1998). Spatial autocorrelation can arise in both species distributions and environmental variabl...

متن کامل

Drift Change Point Estimation in the rate and dependence Parameters of Autocorrelated Poisson Count Processes Using MLE Approach: An Application to IP Counts Data

Change point estimation in the area of statistical process control has received considerable attentions in the recent decades because it helps process engineer to identify and remove assignable causes as quickly as possible. On the other hand, improving in measurement systems and data storage, lead to taking observations very close to each other in time and as a result increasing autocorrelatio...

متن کامل

Fast pairwise IBD association testing in genome-wide association studies

MOTIVATION Recently, investigators have proposed state-of-the-art Identity-by-descent (IBD) mapping methods to detect IBD segments between purportedly unrelated individuals. The IBD information can then be used for association testing in genetic association studies. One approach for this IBD association testing strategy is to test for excessive IBD between pairs of cases ('pairwise method'). Ho...

متن کامل

s-CorrPlot: An Interactive Scatterplot for Exploring Correlation

The degree of correlation between variables is used in many data analysis applications as a key measure of interdependence. The most common techniques for exploratory analysis of pairwise correlation in multivariate datasets, like scatterplot matrices and clustered heatmaps, however, do not scale well to large datasets, either computationally or visually. We present a new visualization that is ...

متن کامل

Attitude of Health Care Professionals Towards Voluntary Counseling and Testing for HIV/AIDS

Introduction: HIV counseling and testing is the vital and preliminary interventional step aimed at reducing the spread of HIV infection. The study was designed to determine the attitude of health care professionals towards voluntary counseling and testing (VCT) for HIV/AIDS at Irrua Specialist Teaching Hospital. Materials & Methods: In this descriptive cross sectional prospective study a sel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012